二次泵系统的设计及控制方法探讨(一)

来源:
发布时间:2017年6月17日
  摘要:本文分析了空调二次泵变水量系统的特点及其负荷调节方法,探讨了水泵变速调节中系统定压差控制的相关问题。结论指出,二次泵系统通过桥管设置实现了水力工况隔离,具有较好的水力稳定性;水泵调速采用远端定压差控制时,水泵扬程需求与负荷分布有关。

    关键词:二次泵系统 桥管 定压差控制 负荷分布

    1、引言

    近年来,随着中央空调的大量使用,我国建筑能耗增长迅速。据统计,1990~2000十年间建筑能耗年均增长5.8%,大大超过同期能源生产2.4%的增长率。在空调能耗中,系统输送能耗约占1/3[1]。因此,变流量技术在空调系统节能设计日益受到重视。

    对于空调水系统来说,输送能耗占总能耗的比例随系统规模的增大而增加。变水量系统(VWV)通过改变输送管网内的冷水流量满足用户负荷要求,可有效降低系统输送能耗。

    2、二次泵系统的设计

    如上所述,用户负荷的变化可以通过改变系统冷水流量实现。但是,为保证水力热力工况稳定,冷水机组所允许的流量波动范围很小。解决这一矛盾,通常有两种方法。

    图1为国内设计中较多采用的压差旁通控制方法。当负荷减小时,用户阀门关小,分集水器压差增加,电动调节阀开大,部分冷水经旁通短路,维持机组流量不变,用户负荷增加时动作相反。

一次泵系统

图1 一次泵系统

    图2为国外设计中常见的桥管旁通控制方法[2][3]。通过设置桥管将整个系统分隔为两个水力工况相对独立的回路:冷水生产和冷水输送。各区均设有循环泵负责提供本区循环动力。当冷机负荷与用户负荷相等时,桥管内流量为零;当用户负荷减少时,桥管内流量从供水流向回水。

二次泵系统

图2 二次泵系统

    对于大型的区域供冷系统,常采用三次泵系统(PST:Primary-Secondary-Tertiary Pumping System),如图3所示[4]。从系统形式上看,三次泵系统只是扩展了桥管应用,仍属于二次泵系统范畴。

三次泵系统

图3 三次泵系统

    三次泵系统将冷水分隔为三个独立的回路:生产(Production)、输送(Transmission)和分配(Distribution)。从循环水泵设置看,三次泵系统属于分布式加压泵系统[5]。一次泵负责冷水产生,二次泵负责冷水输送,三次泵负责冷水分配。各回路间水力工况相对独立,各用户间水力耦合性小,无最不利用户存在,系统水力稳定性较好[6]

    三次泵系统用户可根据各自需要配置相应的循环水泵,并通过调节水泵转速来匹配负荷要求,桥管的设置有效地避免了用户间调节工况的干扰。在理想工况下,一次泵、二次泵的扬程之和与一次泵系统水泵扬程相等。因此,三次泵系统的水泵能耗不会高于一次泵系统。