二次泵系统的设计及控制方法探讨(二)

来源:
发布时间:2017年6月17日

    3、二次泵系统的负荷调节

    二次泵系统是一个变水量系统,通过改变循环水量实现对用户的负荷调节。常见的变水量调节方法有台数调节和变速调节两种。

    3.1 台数调节

    传统一次泵系统的台数调节较多采用差压控制,二次泵系统的台数调节主要采用流量控制,在控制精度较高的场合多采用负荷控制。

    差压控制是利用水泵并联特性曲线,设定一个供回水压力的波动范围,当负荷变化引起管网流量改变时,供回水压力也随之波动,当超过设定上限值时增泵;当低于设定下限值时减泵。

    流量控制是根据桥管内水流的方向和大小控制水泵及相对应冷机的开停。当用户负荷下降,二次流量减少时,一次流量过剩,桥管内冷水由供水流向回水。当流量大于单泵流量110%时,关闭一台冷机及相应水泵;当用户负荷增加,一次流量出现不足,桥管内冷水逆向流动。当流量大于单泵流量20%时,开启一台水泵及相应的冷机。提前开启冷机的目的是为避免二次供水温度出现较大波动。

风机盘管制冷量与流量关系

图4 风机盘管制冷量与流量关系

    图4为空调系统常见末端设备风机盘管的制冷量与流量的关系图[7]。由于末端设备热特性具有非线性特点[8]~[10],当流量需求减至一台水泵时,并非意味着用户负荷也减至一台冷机容量。因此,在控制要求较高的场合应采用负荷控制。负荷控制是通过检测一次侧供回水管上的温差和流量计算得到需冷量,当需冷量降至相当于一台冷机的容量时停一台水泵及相应的冷机。较之流量控制,负荷控制可有效解决水力、热力工况不协调的问题[1]

    3.2 变速调节

    二次泵扬程克服的阻力包括管网、盘管、平衡阀及控制阀等。在定速变水量系统中,当流量减少时,管网、盘管及平衡阀的压力降也减少,但循环泵扬程不仅没有降低,反而还有所增加,二者之间的差值就必须由控制阀(二通阀)来负担,见图5。因此,定速变水量系统的节能效果并不明显。在极低负荷时,控制阀会因压差过大失控,使过量冷水通过盘管。

定速变水量系统控制阀上的压差变化

图5 定速变水量系统控制阀上的压差变化

    采用水泵变速调节可以克服上述弊端。当负荷减少时,通过改变水泵转速使扬程和流量减少,可以获得明显的节能效果。考虑变频器效率和电机散热等因素,变速调节应有一个最低转速限制(一般为额定转速的30%)。当负荷变化范围较大时,常采用多泵并联变速调节实现节能运行。

    图6是几种不同运行方式下的泵功率随负荷变化的曲线。定水量系统水泵运行工况点不变,泵功率不变;单泵定速系统仅靠二通阀的节流调节,水泵功率变化不大;多泵变速系统在低负荷时仍能保持较大的节能潜力。

不同运行方式下的水泵功率对比

图6 不同运行方式下的水泵功率对比

    4、水泵变速调节的控制曲线

    根据相似定律,相似工况点处水泵功率与其转速的三次方成正比。在忽略静扬程时,系统曲线上的点为相似工况点,满足相似定律。在变速变水量系统中,水泵变速调节常采用恒压差控制,控制曲线与系统曲线不重合。因此,水泵功率与转速也不满足三次方定律。

    图7是水泵变速调节恒定压差控制时各曲线间的关系。水泵扬程由恒定压差和可变压差两部分组成:恒定压差即压差传感器控制回路,由盘管、平衡阀和控制阀组成,其值不随流量变化改变;可变压差为输配管网压降,与管网流量平方成正比。由管网曲线向上平移一个恒定压差即得控制曲线。由图可以看出,恒定压差越小,系统的节能效果就越好。

水泵变速调节的控制曲线

图7 水泵变速调节的控制曲线

    需指出的是,图7中控制曲线是假设用户负荷比例变化条件下得到的一条平均曲线。例如,当系统流量减少50%时,系统内各用户流量需求均为50% 。在实际中,用户负荷是按各自需求确定的,各用户流量变化也很少能够保持一致。